Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → MIN(X, Y)
LOG(s(s(X))) → QUOT(X, s(s(0)))
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → MIN(X, Y)
LOG(s(s(X))) → QUOT(X, s(s(0)))
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
LOG(s(s(X))) → QUOT(X, s(s(0)))
LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(X), s(Y)) → MIN(X, Y)

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MIN(s(X), s(Y)) → MIN(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MIN(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2)  =  x1
s(x1)  =  s(x1)
min(x1, x2)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))

The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LOG(s(s(X))) → LOG(s(quot(X, s(s(0)))))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LOG(x1)  =  x1
s(x1)  =  s(x1)
quot(x1, x2)  =  x1
0  =  0
min(x1, x2)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented:

quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

The set Q consists of the following terms:

min(x0, 0)
min(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
log(s(0))
log(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.